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ABST'RACT 

The Sunblazer radio propagation 
a signal, which has been transmitted 
be detected, and its time of arrival 
as possible. A communication scheme 

experiment requires that 
through the solar corona, 
estimated as accurately 
which does this optimally 

is analyzed in terms of its sensitivity to the dispersive 
effect of the coronal plasma. It is shown that receiver per- 
formance can be evaluated if the cross-correlation function 
of the dispersed and undispersed signal is known. The method 
of a Taylor expansion of phase is used to obtain an expression 
for this cross-correlation function that is suitable for 
machine computation. Three cases are then examined--the .. - 
rectangulfir pulse, and the--€Rrm- and eleven-bit Barker codes. 
In each cas-cross-correlation and the mean-square estima- 
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tion error are computed and plotted for different-amounts of 
disxersion. The "dispersion time" is defined as a measure 
of di-5-persion, and it is seen that signal degradation becomes 
severe when this parameter becomes larger than the elementary 
pulse width of the signal. 
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I. INTRODUCTION 

. 

A primary purpose of the Sunblazer solar probe, which is 

to be launched in the summer of 1968,is to make measurements 

of the electron density of the extended solar corona (Refs. 

9, 10). This can be done by transmitting two narrowband 

signals from the satellite on two different frequencies. 

Each signal will experience a different propagation delay 

through the corona due to the frequency-dependent group vel- 

ocities, which in turn are functions of the electron density. 

The aim, then, is to measure as accurately as possible the 

relative arrival times of the received signals. 

We will see that in designing a system to make this __-- 
measurement, it is desirable to shape our signal such that 

it has a peaked auto-correlation function. Barker codes are 

useful because they have this sroperty. To detect the signal 

_ _  

and estimate its arrival time, the optimum receiver takes 

the correlation function of the deniodul?.ted received signal 

(ideally Barker code plus noise) with another Barker code. 

The receiver thus produces the auto-correlation function of 

the Barker code, and signal detection and arrival time esti- 

mation is accomplished by measuring the height and time- 

position of the central peak. 

This reception scheme, however, does not take into 

account the dispersive effect of the coronal plasma on the 

signal. The demodulated received signal will consist no-t of a 
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Barker code plus noise, but a dispersed version of the Barker 

code plus noise, and the receiver will not calculate the 

desired auto-correlation function. The performance of the 

receiver will thus be degraded; finding out to what degree 

it will be degraded is an objective of this thesis. 

An investigation of this dispersion problem had already 

been begun by Gordon R. Gilbert at the Center for Space 

Research (Ref. 6 ) .  He first applied Ginzburg's phase expan- 

sion technique to the correlation reception of a rectangular 

pulse. This has provided much of the groundwork for my thesis. 

A. Sunblazer Radio Propasation Experiment 

A wave packet propagating through an ionized medium 

(e.g. the corona) with no magnetic field present will have a 

group velocity given by 

Here w is the center frequency of the group, the "plasma 

frequency" w = 2.rr f =JZ, and n is the number of electrons 

per cc (Ref. 1 3 ) .  We see, then, that the signal velocity, and 

hence propagation time, is a function of both frequency and 

electron density. We can use this fact to measure the coronal 

0 P P mE 

electron density by transmitting signals on two separate 

frequencies through the corona and finding the difference in 

their propagation times. 

between signals on frequencies fl and f2 > fl, will be 

The relative propagation delay 
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'r' 

where t h e  l i n e  i n t e g r a l  i s  taken a long  t h e  propagat ion  pa th .  

Then , 

P' 
O r ,  f o r  f l  l a r g e r  t han  f 

W e  would l i k e  t o  make T as l a r g e  as  p o s s i b l e  so as  t o  maximize t h e  

s e n s i t i v i t y  of  t h e  experiment.  

l a r g e r  t han  t h e  plasma frequency of t h e  innermost r eg ion  of t h e  

corona ,  and f 2  i s  chosen so t h a t  1 - ( f 1 / f 2 ) 2  i s  close t o  u n i t y .  

P r e s e n t  p l a n s  c a l l  f o r  f l  = 75 Mcps, and f 2  = 225 Mcps (Ref. 9 ,  

Therefore  f l  i s  made s l i g h t l y  

pps.  38-40). 

I f  f l ,  f 2 ,  and f are s u b s t i t u t e d  i n t o  ( 3 )  , w e  f i n d  
P 

t h a t  

T = 2.13-10-19N seconds 

where N = nds i s  t h e  "columnar d e n s i t y " ,  o r  t o t a l  number of 

e lectrons pe r  square  cen t ime te r  a long  t h e  t r ansmiss ion  pa th .  

Th i s  columnar d e n s i t y ,  N = N ( p ) ,  i s  r e l a t e d  t o  t h e  r a d i a l  

d e n s i t y ,  n ( r )  , (see f i g u r e  1) by t h e  i n t e g r a l  

I 

m m 

N ( p )  = n(R)dS = Ro n ( r ) d s  J 
-03 

J 
-m 

( 4 )  

where t h e  lower c a s e  d i s t a n c e s  have been normalized w i t h  r e s p e c t  

t o  t h e  solar  r a d i u s  Ro. N ( p )  w i l l  be found by measuring T f o r  

d i f f e r e n t  p o i n t s  a long t h e  s a t e l l i t e  t r a j e c t o r y ,  and hence f o r  

d i f f e r e n t  p ,  t h e  p a t h  o f f s e t .  As seen above, t h e  r a d i a l  

d e n s i t y  n ( r )  can t h e n  be obta ined  (Ref. 9 ,  pps. 8-11) .  Th i s  

- 3 -  
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p - p a t h  o f f s e t  

F igu re  1 - Propagat ion Pa th  Through S o l a r  Corona 
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is the basis for the radio propagation experiment. 

B. Communications Aspect of Sunblazer 

As seen above, we would like to measure as accurately as 

possible the arrival time of a received pulse. We can view 

this as a communication system which is moaeled as in figure 2 

(Ref. 5, p. 2 ) .  Note that this model neglects dispersion. 

The transmitted signal is 

X(t) = m(t)coswot = R e [ q  m(t)eJoot] (5)  

where m(t) is narrow-band and is normalized to w i t  energy 

i.e. 
03 

Jm2(t)dt = 1 
- 0 3  

The random phase, 8 ,  is modeled by a uniform probability 

density as below 

I 
d.rr 

dT 

The attenuation is assumed to be known (random amplitude 

fluctuations are ignored). The propagation delay (or arrival 

time), T ~ ,  is treated as a real (non-random) but unknown 

parameter. Finally, the additive noise, n(t), is modeled 

as white Gaussian, with variance N /2. The received signal 

is then 
0 

- 5- 
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r ( t )  = CTiT m ( t - . r o )  cos (Wet + e )  + n ( t )  

There are t w o  problems a s s o c i a t e d  wi th  t h i s  communication 

system. F i r s t ,  a d e c i s i o n  m u s t  be made as  t o  whether o r  n o t  a 

s i g n a l  i s  a c t u a l l y  p r e s e n t ;  t h i s  i s  t h e  d e t e c t i o n  problem. 

Then, assuming t h a t  a s i g n a l  i s  p r e s e n t ,  t h e  a r r iva l  t i m e  T~ 

must be measured, t h i s  being t h e  e s t i m a t i o n  problem. T o  

ach ieve  both  d e t e c t i o n  and a r r i v a l  t i m e  e s t i m a t i o n  f o r  t h i s  

phase incohe ren t  s i t u a t i o n ,  it i s  s u f f i c i e n t  (and op t ima l )  

f o r  t h e  receiver t o  c a l c u l a t e  t h e  squa re  of  t h e  c o r r e l a t i o n  

f u n c t i o n  of t h e  demodulated s i g n a l  (Ref. 1 7 ,  Chap. 7 ) .  This  

" c o r r e l a t i o n  r e c e i v e r "  i s  shown i n  f i g u r e  3 .  W e  can trace t h e  

o p e r a t i o n s  performed on t h e  r ece ived  s i g n a l  as it goes  through 

(6) r 

t h e  c o s i n e  channel  as follows: 

The r ece ived  s i g n a l  i s  

r ( t )  = J2Er m ( t - - r o )  [ c o s w o t c o s ~ - s i n w o t s i n ~ I  + n ( t )  

Then : 

(A) : r I 
I m ( t - T  ) c 0 s 2 ~ ~ , c o s e  m ( t - T  ) cos0  + - 

0 2 0 
t)coswot = - 

J2Er 
2 

- -  m ( t - T  )sin2w tcose  + n ( t ) c o s o  t 2 0 0 0 

(B): Low-pass f i l t e r  s u b t r a c t s  o u t  high-frequency t e r m s ,  l e av ing :  

where n c ( t )  i s  t h e  low-frequency c o s i n e  component of  t h e  n o i s e .  

-7- 



( C ) :  A f t e r  i n t e g r a t i o n ,  w e  have 

W e  now in t roduce  an  important  assumption about  t h e  random 

phase 8 which w i l l  be p a r t  of o u r  model of t h e  channel .  Namely, 

w e  assume t h a t  8 = e ( t )  i s  slowly-varying wi th  r e s p e c t  t o  t i m e .  

S p e c i f i c a l l y ,  8 must remain approximately c o n s t a n t  over t h e  

p e r i o d  of i n t e g r a t i o n .  When t h i s  i s  no t  t h e  case, t h e  commu- 

n i c a t i o n  scheme w i l l  break down. 

Then b r ing ing  cos0 o u t s i d e  of t h e  i n t e g r a l ,  w e  have 

J q  
- cos0 R m m ( ~ - ~ o )  + noise  t e r m  2 

where R ( T - T ~ )  is t h e  s h i f t e d  a u t o - c o r r e l a t i o n  f u n c t i o n  of 

t h e  message waveform m ( t ) .  S i m i l a r l y ,  a f t e r  i n t e g r a t i o n  i n  

mi 

t h e  s i n e  channel  w e  have 

rn r - sineR ( T - T  ) + n o i s e  t e r m  2 mm 0 

(D): A f t e r  squar ing  and adding w e  have, as  t h e  o u t p u t  of t h e  

optimum receiver, 

R & ( T - T ~ )  + noise  terms 'r y 2 ( d  = 2 ( 7 )  

A d e c i s i o n  as t o  t h e  presence of  t h e  s i g n a l  ( d e t e c t i o n )  

i s  t h e n  made based on t h e  he igh t  of t h e  c e n t r a l  peak of t h i s  

o u t p u t  y 2 ( - r ) ,  and an  estimate of T~ i s  made by looking a t  t h e  

- 8 -  
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time-position of the central peak. Some measures of performance 

can then be chosen that will tell us how certain our detection 

decision is and how accurately we have estimated T . Since 

the receiver is optimal (in the mathematical sense), we will 

then know what is the best possible performance that we can 

expect. The details of how this is done are left for the 

next chapter, and at tnis point it is important only to be 

aware of two points. 

0 

First, detection performance depends only on the peak 

value of Rm, and hence only on the signal energy. Thus no 

amount of coding can improve detection performance. Coding 

can, however, be beneficial with respect to arrival time esti- 

mation. It turns out (and will be derived in the next chapter) 

that for large signal-to-noise ratio the mean-square estimation 

error is given by 

where W is the effective bandwidth of the signal. What we 

would like to do then, is for a given available energy, trans- 

mit a signal with as large a bandwidth as possible. Theoreti- 

cally we could put all of the energy into a single narrow pulse. 

This is impossible, however, because of the practical problem 

of peak power limitations that arises in building the trans- 

mitters. It is necessary, then, to take a long, low-power 

pulse, and code it so as to increase its bandwidth. A 

class of codes which achieve this are the Barker codes. 

-9-  
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. 
These are pseudo-random codes whose a u t o  c o r r e l a t i o n  f u n c t i o n s  

have a c e n t r a l  peak N t i m e s  as  h igh  as any of  t h e  s i d e  peaks,  

where N i s  t h e  number of b i t s  i n  t h e  code. The e l e v e n - b i t  

Barker  code, w i t h  i ts  a u t o - c o r r e l a t i o n  f u n c t i o n ,  i s  shown i n  

f i g u r e  4. Although t h e  longes t  known Barker code i s  t h i r t e e n  

b i t s  long ,  t h e  basic code can  be f o l d e d  on i t s e l f  t o  i n c r e a s e  

t h e  energy. Sunblazer  w i l l  probably u s e  a t r i p l y - f o l d e d  

v e r s i o n  of  t h e  e l e v e n - b i t  code (Ref. 9 pps. 46-48), 

C. Dispers ion  

The r e c e p t i o i  scheme t h a t  has  j u s t  been desc r ibed  does 

n o t  t a k e  i n t o  account  t h e  d i s p e r s i v e  e f f e c t  of t h e  plasma. 

I n  f ac t ,  t h e  r ece ived  s i g n a l  w i l l  be  a co r rup ted  v e r s i o n  of 

t h e  s i g n a l  t h a t  w a s  expected when t h e  optimum r e c e i v e r  w a s  

designed.  The performance of t h e  r e c e i v e r  w i l l  be degraded-- 

t h e  e s t i m a t i o n  error w i l l  become l a r g e r ,  and more impor tan t ,  

i f  t h e  d i s p e r s i o n  becomes l a r g e  enough it may n o t  even be 

p o s s i b l e  t o  detect t h e  s i g n a l .  A l s o ,  it is d i f f i c u l t  t o  

compensate f o r  t h e  e f f e c t  before  hand by changing t h e  

receiver des ign ,  s i n c e  t h e  degree of d i s p e r s i o n  w i l l  change 

w i t h  t i m e  and w i l l  o f t e n  be unpred ic t ab le .  

C l e a r l y  d i s p e r s i o n  might prove t o  be an u n d e s i r a b l e  

problem i n  t h e  p r a c t i c a l  sense,  and t h i s  would be reason  

enough t o  examine it i n  d e t a i l .  The problem a lso  has import 

i n  t h e  theoret ical  sense ,  as becomes appa ren t  i f  w e  c o n s i d e r  

t h e  fo l lowing  p o i n t s .  

F i r s t ,  one should real ize  t h a t  t h e  primary Sunblazer  

-11- 



experiment depends upon the fact that the medium is dispersive. 

Dispersion simply implies that the phase velocity of a propa- 

gating wave is dependent on frequency. If the phase velocity 

was not a function of frequency, then the group velocity of 

the signal could not be a function of frequency either. Hence 

dispersion doesn't enter into the picture as simply an 

annoying side effect; it is an inherently necessary phenomenon. 

Although dispersion is a necessary effect, the degree 

to which it manifests itself is perhaps not as clear. If our 

signal was to be a long pulse (essentially monochromatic) it 

would be virtually unaffected by dispersion. However, the 

accuracy with which we can estimate the arrival time of the 

signal becomes better as we make our signal bandwidth larger. 

This, of course, is why we code the signal in the first place. 

But the larger we make the bandwidth the more significant 

becomes the effect of dispersion. And, as will be shown later, 

as the dispersion increases the estimation error also increases. 

What we have, then, is a trade-off. On the one hand we know 

that increasing the bandwidth decreases the estimation error, 

but on the other hand the degree of dispersion becomes larger 

which increases the estimation error. The point here is that 

dispersion puts an inherent mathematical limitation on the 

best performance that we can hope to achieve. In this sense 

dispersion should naturally be part of a communication 

theory approach to the Sunblazer type problem. 

D. Thesis Objectives 

The primary goal of this thesis is to see how dispersion 

-12- 
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fits into the communication problem, and what it does to 

receiver performance. To do this I have first defined and 

examined some measures of receiver performance, for Loth 

detection and estimation. Then I have expanded and generalized 

these measures so that they would be meaningful when applied 

to a corrupted signal that has been processed by the correla- 

tion receiver described earlier. Next we will find a way to 

see just what the dispersed signal looks like, and determine 

a meaningful measure of dispersion. This is then applied to 

the specific case of the coronal plasma, and the measure of 

dispersion is evaluated for different points in the Sunblazer 

trajectory. Finally numerical results are obtained that tell 

us exactly what happens to the receiver performance as the 

amount of dispersion changes. 

-13- 



11. THE COMMUNICATION PROBLEM 

In this chapter we will introduce.dispersion into our 

model for the communication system, and see how it is related 

to receiver performance. A s  a primary result, we will find 

that to determine the change in receiver performance it is 

necessary and sufficient to calculate the cross-correlation 

function of the dispersed and un-dispersed signal. In arriving 

at this we will first examine in some detail the detection 

and estimation problems for the case of no dispersion, and in 

doing so we will introduce some measures of receiver performance. 

It will then be easy to re-evaluate these performance measures 

for the case of a dispersed signal. 

A. Detection - No Dispersion 

We have seen that y2(~), the output of the correlation 

receiver, consists of a term proportional to the square of the 

auto-correlation function of m(t), plus added noise terms. 

This output can be observed and used to decide which one of 

two hypotheses we believe is correct--namely, a signal is 

present, or a signal is not present. We would expect to have 

a decision rule of the form: "A signal is present if the 

output of the correlation receiver (peak output) is greater 

than some threshold value, say 5 . "  In figure 5 a typical exam- 

ple is shown in which we would say that a signal is present. 

ROC Curves As a Performance Measure: 

We should first recognize that there are to possible 

types of detection error that can occur, which we can call 

"miss" and "false alarm". In the case of a miss, our peak 
-14- 
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c o r r e l a t i o n  o u t p u t  i s  below t h e  chosen t h r e s h o l d  5,even though 

a s i g n a l  i s  a c t u a l l y  p re sen t .  I n  the c a s e  of a f a l s e a l a r m ,  a 

peak i s  above t h e  t h r e s h o l d  though no s i g n a l  i s  p resen t .  The 

a s s o c i a t e d  error p r o b a b i l i t i e s  a r e  t h e n  

- = Pr [ E  I S i gna l  present ]  'M - ' m i s s  

= P r [ E l  s i g n a l  absen t ]  - 
'F - ' f a l s e  alarm 

= 1 -  
' m i s s  'detection 

For a g iven  s igna l - to -no i se  ra t io1  w e  w i l l  have a t rade-of f  

between PM and PF, ana w e  could d r a w  a curve r e l a t i n g  t h e  

t w o  ( f i g u r e  6 a ) .  Where w e  a r e  on t h i s  curve depends on o u r  

cho ice  of t h r e s h o l d ,  5 .  For example, choosing 5 l a r g e  w i l l  

r e s u l t  i n  a s m a l l  chance of false alarm,  bu t  a l a r g e  change 

of m i s s .  whatever w e  w a n t  a s  long as  

w e  l i m i t  o u r s e l v e s  t o  t h e  curve; t o  g e t  o f f  o f  t h e  curve  w e  

would have t o  change t h e  S N R .  I n  g e n e r a l ,  w e  could c a l c u l a t e  

an e n t i r e  fami ly  of cu rves  f o r  d i f f e r e n t  S N R  t h a t  would completely 

d e s c r i b e  t h e  o p e r a t i o n  of t h e  receiver as a d e t e c t o r  ( f i g u r e  6 b ) .  

This  set of curves  i s  c a l l e d  t h e  " r e c e i v e r  o p e r a t i n g  charac-  

t e r i s t ic"  (ROC). 

W e  can make PM and P F 

The p o i n t  he re  i s  t h a t  our  cho ice  of 5 ,  i . e .  o u r  d e c i s i o n  

r u l e ,  i s  somewhat a r b i t r a r y  i n  t h a t  it depends on what t ype  

of performance w e  d e s i r e .  F o r  example, w e  might a s s i g n  

a c e r t a i n  cost  t o  making each type of  error, and t r y  t o  

minimize t h e  average cost:  

ISNR = Er/No = s i g n a l  energy over n o i s e  s p e c t r a l  d e n s i t y .  

-16- 



- 
C = C(M)PM + C(F)PF 

Here we would pick 5 so as to minimize E .  This average cost 

would then be our performance measure. 

We could also use a total error probability for a 

performance measure, namely: 

P (E) =Pr [signal present] *PM+Pr {signal absent] =PF 

This total P(&), however, is often not very meaningful since 

the a priori probabilities are usually either unknown or are 

changing with time. 

value as a performance measure, since values for C(M) andC(F) 

are difficult to assign and may also change with time. 

The average cost c is also of questionable 

I feel that the set of ROC curves alone is the best 

way of describing receiver performance, particularly for 

Sunblazer. From these curves the threshold 5 can be deter- 

mined for any decision criterion (e.g. minimax, Neyman-Pearson, 

etc.) and a corresponding performance measure can be evaluated. 

Calculation of the ROC Curves 

We are interested in t h e  statistics of the peak value 

of Y(T), the output statistic of the correlation receiver. 

Suppose that we could write the conditional probability 

densities for this peak output (call it y) given that a signal 

is absent, and given that a signal is present (figure 7). 

PM and PF could then be found by integrating the densities 

over the regions indicated. For a given SNR we would then 
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py ( y  I s i g n a l  p r e s e n t )  

I peak o u t p u t  
5 (p ick  a r b i t r a r i l y )  y=y (To) 

Figure  7 - Condi t iona l  D e n s i t i e s  f o r  Peak  Output 

have PM and PF both  a s  a func t ion  of 5 and o b t a i n  PM i n  t e r m s  

of  PF, which i s  t h e  d e s i r e d  r e s u l t .  

For t h e  case of whi te  Gaussian n o i s e  and coherent  phase 

t h e  s o l u t i o n  of  t h i s  problem i s  n o t  too bad, and it  i s  

p o s s i b l e  t o  determine an a n a l y t i c  expres s ion  f o r  PM as a 

f u n c t i o n  of PF ( R e f .  11). 

phase t h e  p r o b a b i l i t y  d e n s i t i e s  c o n t a i n  B e s s e l  f u n c t i o n s ,  and 

t h e  s o l u t i o n  i s  cons ide rab ly  more d i f f i c u l t .  I n  f a c t  a n  

a n a l y t i c  s o l u t i o n  for  PM i n  terms of PF i s  imposs ib le ,  and 

e l i m i n a t i o n  of 5 must be c a r r i e d  o u t  by means of machine 

computation. I n t e r e s t i n g l y ,  i t  t u r n s  o u t  t h a t  i f  random 

ampl i tude  i s  inc luded  i n  t h e  channel model (Rayleigh d e n s i t y )  

t o g e t h e r  w i t h  incohe ren t  phase,  an  a n a l y t i c  s o l u t i o n  i s  

p o s s i b l e .  I t  i s  n o t  my i n t e n t i o n ,  however, t o  compute t h e  

ROC cu rves  f o r  any of t h e s e  cases. The problem i s  a c lassical  

However, f o r  our  case of i ncohe ren t  
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one, and appears in the references (Ref. 11, chap. 3 ;  Ref. 16, 

chap. 2). 

B. Estimation - No Dispersion 

In estimating the signal's arrival time we must again 

consider two types of errors that can occur. The first type, 

which we can call "catastrophic error", results from the pres- 

ence of secondary peaks on the function y 2  (T) which are removed 

from the main peak. If the receiver should lock on to one 

of these secondary peaks, a large estimation error will, of 

course, occur. For large signal-to-noise ratio there is 

little chance of this happening. If the S N R  was low enough 

to make catastrophic error a significant problem, it would 

also be too low to successfully detect the signal. In this 

case, present Sunblazer plans call for sequential detection, 

which effectively raises the energy, and makes catastrophic 

error again improbable. For this reason I have chosen to not 

analyze this type of error in any detail. 

The second type of error occurs when noise causes slight 

shifts in the position of the main peak. This type of error 

is, of course, always present, and results in a small inaccuracy 

in the estimation of arrival time. A good performance measure 

associated with this kind of error is the mean square estima- 

tion error , c L ( - r )  = (?-T ) L ,  where ? is our estimate of the 

actual arrival time - r 0 .  This mean square error is dependent 

not only on the signal-to-noise ratio, but also on the signal 

bandwidth. This dependence can be derived as follows. 

0 
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Assume the transmitted signal is of the form 

with Jm2(t)dt = Et =Er 

Here, for simplicity, we have assumed that attenuation and 

random phase are introduced at the transmitter. The received 

signal is then 

r(t) = S(t-.ro) + n(t) 

where T is the actual arrival time. Let Z be our estimate 

of T ~ .  

the density p [ T I r (t) ] is maximized. 

0 

Then we would like our receiver to pick ? = T  such that 

p[r(t)l is independent of T, so we can equivalently maximize 

p [r (t) I T J  *p ( T )  . 
left with maximizing p[r(t) I T ]  

Then, assuming no a priori knowledge of T , we are 

(MAP estimate). 

Average this over the random phase 8 :  

[r(t)-s(t-T) lele (10) - 
- Pn(t) 

The noise n(t) is a Gaussian random process that can be projected 

onto a set of orthornormal functions to yield independent Gaussian 

random variables. 
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where N is the number of orthonormal functions in the expansion. 
m 

m 
r 

0 

-m -m 

The integrations of r2(t) and S2(t--r) will not depend on T ;  

therefore they can be ignored and replaced by a constant. 

receiver, then, should maximize: 

The 

since COS(W t-6) = cos w tcose + sino tsin0, we have: 
0 0 0 

21T 00 m 

-m J de 
2 m(t-r)r(t)cosootdt + sin6 m(t-~)r(t)sino~tdt] 

-m 

I 
O 2  

) o No JL; + Lg =K*I ( - (14) 
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Where I ( ) is the zero-order modified Bessel function, 
0 

03 

and Lc(~) = m(t-T)r(t)coswot dt (15a) J 
-03 

m 

and L S ( - r )  = m(t-T)r(t)sinwot dt I 
-m 

But we observe that L:(T) + L~(T) is just the output of the 
correlation receiver (the function of the low-pass filtering 

is carried out, in effect, by the integration). 
m m 

]m(t-r)r(t)cosw t dt = m(t-T) [m(t-.ro) + nc(t)]dt 

(16) 
0 J 

-03 -03 

Since n (t) is zero mean, and n(t) and m ( t )  are uncorrelated, 

the integral of m(t-T)nc(t) will be approximately zero, 

especially compared to R ( T - T ~ ) .  Hence we disregard it, and 

are left with: 

C 

mm 

Approximation of Large Signal-to-Noise Ratio: 

I R ~ ( T - T O ) I  

If is large, we can approximate I o ( X )  by its 
NO 

asymtotic value for large X (Ref. 1) : 
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We will be interested in the variance of this density--i.e. 

how fast it varies about T . 
varying comapred to e I Rmm(T-To) I , which is very highly peaked 
at T = T  . 
that: 

But 4 R m ( ~ - ~ o )  I is slowly 
0 

Hence we ignore the J I R m ( ~ - ~ o )  I term, and write 
0 

We now expand I R m m ( ~ - ~ o )  I in a Taylor series about T = T : 
0 

0 
T=T 

Since R m ( ~ - ~  ) is a maximum at T = T 

term is zero. Also, Rm ( 0 )  is not a function of T and hence 

can be ignored. We have, then, 

the first derivative 
0 0' 

where A T  = T - T  
0 

This is the probability density for the estimation error, A T .  

Then  AT)^ = E ~ ( T )  = the variance of this density (since it 

is a Gaussian). 
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where Qmm(w) is the spectral density of 

-03 
03 

Here W is the "effective", or mean-square, bandwidth, defined by: 

We have, then, for large SNR: 

for W in radians per second, or 

1 
= 8 ~ r w  

for W in cycles per second. 

Approximation of Small Siqnal-to-Noise Ratio : 

If IRmm(~-~o)I/No is small, we can approximate the modi- 

fied Bessel function by the first two terms in its power 

series representation: 
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. 1 
[r(t)-S(t-T)] = K ' e  Rk (T-To) 

Or, Pn(t) 

Now expand R2 ( T - T  ) in a Taylor series about T ~ :  mm 0 

-1 and ( A T ) '  = E ~ ( T )  = 

0 
0 

(24) 

(25) 

The first term on the right is zero, so: 

We have, then, for small SNR: 
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For W in radians per second, or 

for W in cycles per second. 

An important point in these derivations is that EZ(T) 

depends only on the magnitude of the autocorrelation function, 

(T) lor R&(T) which is the output of the correlation IR* 
receiver. This came from the integrals LC(-r) and LS( . r )  in 

equations 14 and 15. Suppose now that the received signal 

consists of noise plus a corrupted version of m(t), say a(t) 

(it doesn't really matter what kind of corruption it is). 

We will show next that if we put this corrupted signal into 

our correlation receiver, the output will be the squared 

cross-correlation function R2 ( T ) .  The mean square error am 
of arrival time estimation will depend only on this cross- 

correlation function, in particular, on its maximum value and 

its mean-square bandwidth. 

C. Detection and Estimation for the Dispersed Case. 

Suppose now that our received signal is of the form 

Re [a (t-To) e j ( w o t + e )  1 + 

where a(t) the dispersed version of m(t) , can be complex, 

i.e. a(t) = ar(t) + jai(t) 

We want to see what the output of the correlation receiver 

is. Referring to the cosine channel in figure 2: 
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. 

A: r(t) cosw t = Re[a(t-ro)e j 3 cosw t 
0 0 

+ n(t)coswot 

=a (t-T )cos(wot+e)cosw t-a. (t-r )sin(w t+e)cosw t+n(t)coswot r 0 0 1  0 0 0 

=a (t-r ) [cosw tcose-sinw tsinelcosw t r 0 0 0 0 

-ai(t-T ) [sinwotcos + cosw tsinelcosw t + n(t)coswot 
0 0 0 

=a (t-ro) [z 1 1  + cos2w t]co~e-a~(t-T~)-~ 1 sin2w tsine 

-ai(t-r ) -  1 sin2w tcos -ai(t-r ) [-i. 1 1  + - cos2w tlsine + n(t)coso t 
r 0 0 

0 2  0 0 2 0 0 

B: After deleting the high-frequency terms, we are left with: 

1 1 -a (t-r )cos0 - -a.(t-r )sine + nc(t) 2 r  0 2 1  0 

C: After integration, we have: 

1 1 
poseRa m(~-ro)- -sineRa,,(r-T0) + noise terms 2 

1 r 

Similarly, after integration on the sine channel we have: 

- p i n  1 R ( T - ~ o ) -  pos8Ra.m(T-r 1 ) + noise terms 
0 arm 1 

D: Squaring and adding, and ignoring the noise terms, we have: 

1 1 
4 y 2 h )  = pos20R2 ( T - T ~ )  + -sin28R2 a.m ( r - r0 )  

1 arm 

+ -sin20R 1 ( T - T ~ )  +zcos20Ra 1 . , , ( r - r0)  +sinOcosORa ( r-ro) Ra .m ( T - T ~ )  
a m  r 1 r 1 

4 
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The output of the correlation receiver, then, consists 

of the squared magnitude of the cross-correlation function of 

the dispersed and undispersed modulation, buried, again, in 

noise (for simplicity we have set 4 2Er = 1). We would now 

like to use this fact to examine the problem of detecting 

and estimating dispersed signals. 

___ 

Detection: 

We have seen before that the most general way of describing 

the receiver as a detector is to calculate its set of ROC curves. 

This, in turn, depends on the statistics of the peak correla- 

tion output. Specifically, we had to know the two conditional 

probability densities for the random variable y, given a signal 

present or absent. Then to determine the ROC curves (and thus 

any other performance measure) for the dispersed case, it is 

necessary to recalculate the two conditional densities. The 

density p (ylsignal absent), and its corresponding probability Y 
will not be any different since if there is no signal pF 

present dispersion is irrelevant. 

If the density p (ylsigrial present) is known for the Y 
undispersed case, recalculating it for the dispersed case is 

also simple. This density is generally a function of both 

the random variable y and the signal energy Er. 

however, is an energy-conserving process; the shape of the 

signal may change, but its total energy always remains 

Dispersion, 
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constant. Rewriting the density, then, requires simply a 

transformation of the variable y. 

If we let yd be the peak output for a dispersed signal, 

and plot it as a function of increasing dispersion, we might 

expect a curve (ignoring noise) such as the one drawn in 

figure 8. 

function of the amount of dispersion, and depends on the 

particular signal. Then to get the new density p (ydlsignal 

present), we make the transformation y = ay and get: 

We could say, then, that yd = ay, where a is a 

yd 
d 

1 'd p (ydlsignal present) = - p (-lsignal present) (30) 
'd a Y a  

This density could then be integrated to get the new miss 

probability (again dependent on the threshold), P , which 
Md 

would be a function of a .  

previously, a new set of ROC curves could be found for any 

particular a. 

From this, and the PF calculated 

Estimation: 

We would now like to rewrite the expression for the mean 

square estimation error for the dispersed case. 

(eq. 15) is again the output statistic of the correlation 

receiver. It now, of course, represents the cross-correlation 

Lg ( T )  + L ~ ( T )  

function of the dispersed and undispersed signals: 

L ~ ( T )  + L ~ ( T )  = I R ~ ~ ( T - T ~ )  l 2  + noise terms 

As long as Ram(.r-~ ) is still peaked at T=T 

same analysis as before. For large signal-to-noise ratio 

we can use the 
0 0' 
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increasing dispersion 

Figure 8 
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w e  would then  have: 

Defining 

w e  t hen  have: 

IT 
E p  = w 

r ( 3 3 )  

For s m a l l  s igna l - to-noise  r a t i o  t h e  mean square  e s t i m a t i o n  

e r r o r  would be 

Th i s  expres s ion  f o r  

however, s i n c e  it n e g l e c t s  c a t a s t r o p h i c  e r ror ,  and, as  mentioned 

ear l ie r ,  s e q u e n t i a l  d e t e c t i o n  w i l l  be used t o  r a i se  t h e  s i g n a l  

energy anyway. 

f o r  s m a l l  SNR i s  no t  very  meaningful ,  

I n  summary, it should be ev iden t  a t  t h i s  p o i n t  t h a t  per- 

formance measures f o r  t h e  d e t e c t i o n  and e s t i m a t i o n  of t h e  
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received signal can be evaluated if we know the magnitude of 

the cross-correlation function R ( T ) .  In particular, detec- 

tion performance is determined by the peak value ~f this func- 

tion, and the mean square estimation error can be calculated 

from the Fourier transform of IR (T) I as in equation 3 3 .  

The next step, then, is to discuss the calculation of this 

cross-correlation function. This will be the topic of the 

next chapter. 

am 

am 
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111. DISPERSION AND THE CROSS CORRELATION 

FUNCTION Ram (T) 

So f a r  i n  o u r  d i scuss ion  o f  t h e  r e c e p t i o n  o f  co r rup ted  

s i g n a l s  w e  have n o t  e x p l i c i t l y  stated anything about  t h e  

n a t u r e  of t h e  c o r r u p t i o n  except  t h a t  it be energy - conserv ing .  

W e  saw t h a t  whatever form t h i s  c o r r u p t i o n  took, a l l  t h a t  

ma t t e red  w a s  t h e  r e s u l t i n g  c r o s s - c o r r e l a t i o n  func t ion  Ram( . r ) .  

Our g o a l  now i s  t o  f i n d  an express ion  f o r  t h i s  R (.r)when t h e  

p a r t i c u l a r  form of t h e  co r rup t ion  i s  d i s p e r s i o n .  
am 

Ginzburg (Ref. 7 ,  pps.  403-423) has  p re sen ted  a way of 

convenient ly  r e p r e s e n t i n g  a d i s p e r s e d  s i g n a l  by employing a 

Taylor  expansion of phase.  This approach w i l l  be d e s c r i b e d  

and used t o  g e t  an express ion  f o r  a ( t )  i n  terms of m ( t ) .  I n  

doing t h i s  w e  w i l l  f i n d  a parameter t h a t  w i l l  s e r v e  as a good 

measure f o r  t h e  amount of d i s p e r s i o n .  Next w e  w i l l  examine 

a s p e c i f i c  t ype  of d i s p e r s i o n  i n  terms o f  t h e  medium t h a t  

causes  it - namely, t h e  homogeneous, i s o t r o p i c ,  c o l l i s i o n l e s s  

plasma. I t  w i l l  t hen  be p o s s i b l e  t o  t e s t  t h e  assumptions 

i n h e r e n t  i n  Ginzburg 's  approach i n  t h e  l i g h t  o f  t h e  Sunblazer  

experiment .  F i n a l l y ,  w e  w i l l  perform t h e  c o r r e l a t i o n  and 

o b t a i n  an expres s ion  f o r  R ( T I .  am 

A. ReDresentation of t h e  DisDersed S i a n a l .  

This  s e c t i o n  f o l l o w s  Ginzburg 's  approach o f  u s ing  a Taylor  
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expansion of phase to obtain a convenient expression for the 

dispersed signal. In this development, Eo(t) is the modulated 

version of m(t) and E(t) is the modulated a(t). 

We can represent a plane wave incident on the dispersive 

medium by : 
t m  

Eo(t) = - 2lT lmg(u)eJWt dw 

where, 
r m  

( 3 5 )  

After this signal has propagated a distance z through the 

dispersive medium, we have: 
roo 

where R(w)  is an attenuation factor, and + ( w )  = w n(w)z is 

the phase of the signal. 

- 
C 

Now if we assume that the signal is quasi-monochromatic, 

i.e. Aw < <  o , we can write: 
0 
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Now s u b s t i t u t i n g  ( 3 8 )  i n t o  (36 )  and changing t t o  0 ,  

w e  have : 

Now w e  s u b s t i t u t e  t h i s  i n t o  (37), and w e  make t h e  assumption 

t h a t  R ( w )  i s  approximately cons t an t  around w and f o r  s i m p l i c i -  

t y  set  it equal  t o  one: 
0 

m m  

Now w e  would l i k e  t o  expand + ( w )  i n  a Taylor  series about  

W e  must recognize,  however, t h a t  ou r  s i g n a l ,  a slowly- 
0' 

w 

vary ing  t i m e  func t ion  modulating a cos ine  wave, i s  double side- 

band ( f i g u r e  9 ) .  

0 
0 0 

-0 

Figure 9 
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Hence i n  t a k i n g  o u r  i n t e g r a l  wi th  r e s p e c t  t o  w f r o m  - m t o  

+ 00 , we must u se  a d i f f e r e n t  Taylor  series r e p r e s e n t a t i o n  of 

0' 
4 ( w )  fo r  w < 0; i .e .  for  w < 0 w e  must expand 4 (w)about - w  

I n  o r d e r  t o  avoid  t h i s  complicat ion w e  w i l l  i gnore  t h e  l e f t  

side of t h e  spectrum and i n t e g r a t e  w i t h  r e s p e c t  t o  w f r o m  0 t o  

0 0 .  I n  t h e  end, t hen ,  w e  would t a k e  t h e  magnitude of o u r  answer 

i n s t e a d  of t h e  real  p a r t .  This  r e s u l t s  i n  t h e  loss  of phase 

in fo rma t ion ,  b u t  t h e  received s i g n a l  i s  phase .incoheren.L anyway. 

W e  w r i t e  t hen ,  
c u m  

Now expand 4 ( w )  i n  a Taylor  series about  w t o  t h r e e  
0 

terms : 

where 52 = w - w  . 
of t h e  phase de l ay ,  + ' ( w  ) a measure of t h e  t i m e  d e l a y ,  and 

4 " ( w  ) a measure of t h e  d i s p e r s i o n .  S u b s t i t u t i n g  [ 4 2 1  i n t o  

W e  w i l l  see t h a t  4 ( w o )  w i l l  be a measure 
0 

0 

0 

1411 and making t h e  a p p r o p r i a t e  change o f  l i m i t s :  
m m  
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m o o  

W e  now make t h e  s u b s t i t u t i o n  

t h e n  
d g ,  and 

0 

H e r e  F i s  t h e  F r e s n e l  i n t e g r a l :  
l T 2  

F ( u )  = C ( u ) + j  S ( u )  = J'ej 2" d u  

0 

U 
- jLu2 

F*(u)  = C ( u ) - j  S ( u )  = \ e  2 d u  
0 

- 37 - 



Now making the substitution 

we have dn=,/w$" (wo)du, and 
m 

- W  

At this point it is worthwhile summarizing the assumptions 

we made in arriving at [ 4 6 ] :  

1. Linearity of the field equations. 

2. M(t) is quasi-monochromatic, i.e. A o < < u  . 
3 .  R ( w )  is constant around w 

4 .  The Taylor expansion of 4 ( w )  exists- 
5. 

0 

0' 

Higher order terms in this expansion (e.g. $ ' ' ' ( w 0 )  ) can 

be neglected. 

We can simplify ( 4 6 )  significantly if we make the additional 

is large; i.e. the assumption of large $* ' (w, )  J, 0 
assumption that 

dispersion. We have, then, 
W 

f 

which is valid only when: 

6. 
w >>1; i.e. large dispersion. 
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Equation ( 4 7 )  i s  o u r  primary r e s u l t .  W e  can check 

it by l e t t i n g  0 I' (w,) +. 0 (no d i s p e r s i o n )  and recogniz ing  

t h a t  w 
I T 2  

e]? du = l + j  

-03 

Then w e  g e t ,  as expec ted ,  

H e r e  w e  can recognize  t h a t  (p ( w o )  r e p r e s e n t s  t h e  phase d e l a y  

and 4 '  (w,) t h e  t i m e  delay.  

A t  t h i s  p o i n t  I would l i k e  t o  i n t r o d u c e  t h e  " d i s p e r s i o n  

t i m e "  a s  a measure o f  t h e  amount of d i s p e r s i o n ;  namely 

T 0 = j W  
W e  w i l l  see l a t e r  t h a t  t h i s  parameter  i s  u s e f u l  i n  t h a t  it i s  

r e l a t e d  t o  t h e  elementary p u l s e  width of t h e  s i g n a l .  

B.  Assumptions and Approximations - t h e  Coronal P lasma.  

If t h e  s i x  assumptions l i s t e d  p rev ious ly  prove t o  be  

v a l i d ,  t hen  w e  can use  equat ion  ( 4 7 )  t o  o b t a i n  t h e  d e s i r e d  

c r o s s - c o r r e l a t i o n  func t ion .  I n  t h i s  s ec t ion  w e  w i l l  examine 

t h e  homogeneous, i s o t r o p i c ,  c o l l i s i o n l e s s  plasma (a  good f i rs t  

o r a e r  approximation t o  t h e  extended so l a r  corona)  as a d i s -  

p e r s i v e  medium. 

f o r  t h e  p a r t i c u l a r  case o f  Sunblazer .  

Then w e  w i l l  t e s t  and v e r i f y  o u r  assumptions 

W e  begin by d e r i v i n g  t h e  d i s p e r s i o n  equa t ion  f o r  t h e  

medium. Wri t ing  t h e  f i r s t  t w o  Maxwell equa t ions :  

- 39 - 



For the  c o l l i s o n l e s s  plasma w e  can expres s  t h e  c u r r e n t  - J a s :  

J = nev - (50)  - 

where - V is t h e  average v e l o c i t y  of t h e  e l e c t r o n s ,  t h e  equa t ion  

of motion is :  

dv m- = e E  d t  - (51’1 

t h e n ,  
dv - ne2E 
d t  7- 

a 2 E o E  - 

a t L  (VxH) = - a J  + a 
a t  - a t  - 

a 2 E  E +at’ 1 ne2 E 
VX- (VXE) = - m - !JO 

If w e  c o n s i d e r  a p l ane  wave s o l u t i o n  of t h e  form 

j ( a t - k z )  E = i  - -x Eoe 
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we have for the wave equation 

ne2p E a 2Ex a 2Ex 

m= m + 7 a t z  
o x  1 

(53 )  

Substituting (52 ) into (53') gives us the dispersion equation: 

Defining the "plasma frequency", 

The dispersion equation becomes: 

Equation 55, plotted in figure 10, completely describes the 

plasma in terms of a dispersive medium. When w < w  k ( o )  
P' 

w 
P 

Figure 10 - Dispersion Equation for Collisionless Plasma 
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becomes imaginary and t h e  wave a t t e n u a t e s  (non-uniform p lane  

wave). When w > w  t h e  wave propagates  wi thout  a t t e n u a t i o n .  

The closer is to 

k ( s )  and t h u s  t h e  greater is t h e  amount of d i s p e r s i o n .  

k ( w )  gets very  l a r g e ,  k ( w )  + w / c ,  and t h e  amount of d i s p e r s i o n  

approaches ze ro .  

P 
t h e  g r e a t e r  i s  t h e  second d e r i v a t i v e  o f  

P 
As 

To get  s o m e  va lues  for  w for  t h e  so la r  corona,  we  need 
P 

Some numbers f o r  t h e  e l e c t r o n  d e n s i t y .  I f  n i s  expressed  as 

t h e  number of e l e c t r o n s  p e r  cc, we  f i n d  t h a t  

w = 5.6 l o 4  r ad ians / sec .  
P 

o r  
f = 9=103-n1/* cps.  

P 

To g e t  s o m e  numerical  v l aues  f o r  n w e  u se  t h e  Allen-Baumbach 

model fo r  t h e  solar  corona (Ref. 9 ) .  This  assumes a sphe r i ca -  

l l y  symmetrical corona,  so t h a t  i s  on ly  a f u n c t i o n  of r a d i a l  

d i s t a n c e .  S p e c i f i c a l l y ,  f o r  r < 1 . 5  Ro : 

n ( r )  = 108 [+ + 71 2 . 9 9  e l e c t r o n s / c c  

and fo r  1.5R0 < r < 50 R ~ :  

( 5 7 )  

where r is  i n  so la r  r a d i i .  Also, d i r e c t  measurements have shown 

t h a t  i n  t h e  v i c i n i t y  of t h e  e a r t h  ( r  = 215R0), n -10  e l e c t r o n s / c c .  

W e  f i n d ,  t hen ,  t h a t  a t  r = 3R0, f 

f = 30 Mcps. Of cour se  i n  t h e  e v e n t  of such occur rences  as 

= 4.5Mcps; and a t  r=1.5R P 0' 

P 
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so lar  flares and prominences, t h e  e l e c t r o n  d e n s i t y  can deviate 

enormously f r o m  these es t imated  v a l u e s .  

C l e a r l y  k(w) l e n d s  i t s e l f  t o  a Taylor  series expansion. 

What w e  would l i k e  t o  show is  t h a t  w e  can n e g l e c t  t h e  h i g h e r  

order terms i n  t h i s  expansion, i . e .  t h a t  w e  can w r i t e  equa t ion  

4 2  t o  good approximation. To  do t h i s  w e  simply expand $ ( w )  = 

k(w)z  t o  f o u r  terms and show t h a t  

i .e.  k' ' ' ( w o )  

I w i l l  n o t  go through t h i s  c a l c u l a t i o n  h e r e ,  b u t  on ly  i n d i c a t e  

t h e  r e s u l t s .  w = 500 x lo6 

w = 200 x lo6 , w e  f i n d  t h a t :  
0 

P 
Ao = 5 X l o 6  

0' 
For r=1.5 R 

l i m  

= .006<<1 I k'' 3k" ( w o )  

kl ( w o )  A w  
A w  <<l. 

Also, as becomes smaller, t h i s  r a t i o  a s y m t o t i c a l l y  approaches 

a s m a l l  va lue :  
P 
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Then, t o  w e l l  w i t h i n  1%, w e  c a n  i g n o r e  t h e  f o u r t h  term i n  

t h e  Taylor  expansion. 

Next w e  would l i k e  t o  l o o k  a t  a second order model f o r  

t h e  co rona l  plasma and examine t h e  a t t e n u a t i o n  due t o  co l l i -  

s i o n s .  I t  i s  shown i n  t h e  appendix t h a t  t h e  c o e f f i c i e n t  of 

a t t e n u a t i o n  due t o  c o l l i s i o n s  is  g iven  by: 

H e r e  v i s  t h e  effect ive e l ec t ron - ion  c o l l i s i o n  frequency,  

g iven  by (Ref. 9 ,  pps.  35-38) : 

-3/2 v = 42.106*nT 

i n  t h e  corona. The t o t a l  a t t e n u a t i o n  a long  a r a y  p a t h  i s  then  
03 

A ( p )  = 2 1  Kds 

6 A t  a frequency of  100 Mcps, and T = 16 OK, A ( p )  i s  1 db a t  

p =  1.5R i s  .02 db a t  2R0, a n d  ze ro  f o r  p 4 Ro. Hence t h i s  

a t t e n u a t i o n  does n o t  p l a y  a large ro le .  Never the l e s s ,  i f  w e  look 

a t  t h e  v a r i a t i o n  i n  t h i s  a t t e n u a t i o n  over A w  = 5x106, w e  f i n d  

0' 

t h a t  
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Our assumption i s  v a l i d ,  then,  t h a t  R(w) i s  approximately 

c o n s t a n t  o v e r  A w .  This  of cour se  i s  r e a l l y  a r e s u l t  of t h e  

f ac t  t h a t  Aa < <  w. 

As f a r  as t h e  l i n e a r i t y  of t h e  f i e l d  equa t ions  i s  concerned, 

t h e r e  are c e r t a i n l y  non- l inear  e f f e c t s  t h a t  can occur  i n  t h e  

propagat ion  o f  a s i g n a l  through a d i l u t e  plasma (e .g .  Luxemburg 

e f f e c t ) .  

effects  because of  t h e  l o w  s i g n a l  power, and t h e  f a c t  t h a t  mag- 

n e t i c  f i e l d s  p r e s e n t  are weak. 

I w i l l  on ly  s a y  here  t h a t  w e  need n o t  worry about  such 

F i n a l l y ,  w e  would l i k e  t o  i n v e s t i g a t e  t h e  approximation of 

l a r g e  d i s p e r s i o n .  W e  want t o  show t h a t  

I t  should  be clear f r o m  t h e  e x p r e s s i o n  above t h a t  t h e  approxi-  

mat ion of large d i s p e r s i o n  is  r e a l l y  an  approximation of long  

Pa th  l e n g t h .  

Rather  t h a n  i n t e g r a t e / k " ( w o ) z  over a changing w I have 
P' 

made t h e  crude b u t  conse rva t ive  approximation t h a t  w i s  c o n s t a n t  

a t  i t s  v a l u e  a t  r = P f o r  pa th  l e n g t h  

where. This  g ives :  

P 
z = 5 R  and ze ro  else- 

0 

5 
T h i s  becomes 5 1 0  o n l y  f o r  w < 1 0  , o r  r ! ~  3 e l e c t r o n s / c c .  

And t h i s  i s  extremely conse rva t ive  - fo r  l a r g e  P ( s m a l l  d i s p e r -  

s i o n ) ,  z should be taken  much l a r g e r  t han  5R0. 
t h e  smallest n t h a t  w e  W i l l  encoun te r  w i l l  be  10 e l e c t r o n s / c c .  

P -  

I n  any case, 
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Hence the approximation of large dispersion will always be 

valid for any point in the Sunblazer trajectory. 

What we have done in this section is to derive the dis- 

persion equation for the coronal plasma, and show that equation 

4 7  can be used to meaningfully represent the dispersed Sunblazer 

signal. Now we can use this to get the cross-correlation 

function,  ram(^). 

C. The Cross-Correlation Function. 

Let us rewrite equation 47 adding on the random phase angle 

W 
0: 

Now define the receiver time, t' = t - 4 '  

time measured from the signal's arrival at the observation point, 

(uo): i.e. t' is the 

disregarding dispersion. Then, 

Or, after demodulation, 

W 

r 
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We define the cross-correlation function: 
w 

r w  

Then, 

We want 

Then, 

( T - - T  u) sinTu2du 1'1 (T-T 0 u)cos -u2du]'+ 2 [Rm 0 2 
71 

( 6 7 )  
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Equat ion  67 is  o u r  d e s i r e d  r e s u l t .  It g i v e s  t h e  magnitude 

o f  t h e  c r o s s - c o r r e l a t i o n  func t ion  i n  terms of t h e  a u t o - c o r r e l a t i o n  

f u n c t i o n  of m ( t )  and t h e  d i s p e r s i o n  T . T h i s  exp res s ion  has 

been e v a l u a t e d  ove r  a range of T 

a r e c t a n g u l a r  p u l s e ,  a 3 - b i t  Barker code, and an 11 -b i t  B a r k e r  

0 

f o r  t h r e e  d i f f e r e n t  m ( t )  - 
0 

code. Plots  of  t h e s e  y ( ~ )  appear  in t h e  nex t  c h a p t e r .  A l s o ,  

an e v a l u a t i o n  of T f o r  d i f f e r e n t  p o i n t s  i n  t h e  proposed 

Sunblazer  t r a j e c t o r y  h a s  been done and appears  as an appendix.  
0 

I would now l i k e  t o  make one o b s e r v a t i o n  about  y ( ~ )  t h a t  

a p p l i e s  whenever m ( t )  is  a b inary  code w i t h  baud l e n g t h  

(e lementary  p u l s e  wid th)  T. If t h i s  i s  t h e  case, t h e  degree  

o f  c o r r u p t i o n  caused by d i s p e r s i o n  depends on ly  on t h e  parameter  

B= .ro/T c a l l e d  t h e  d i s p e r s i o n  r a t i o .  

t h e  r a t i o  a = yd/y from equat ion  30 .  

For example, cons ide r  

For s i m p l i c i t y  i n  w r i t i n g  w e  break up t h e  sum and c o n s i d e r  j u s t  

t h e  c o s i n e  p a r t .  

m 
r 
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-T 

F i g u r e  Ila 

. 

-T 

F i g u r e  llb 

-- 
n 

F i g u r e  l l c  
-4  9- 



But Rm ( 0 )  = nT, where n i s  t h e  number of b i t s  ( f i g u r e  l l a )  . 
m 

r ( T U )  cosLu2du/nT 
Then JRmm o 2 

a 

( T  u) i n t e r -  Rmm 0 
L e t  T = f3 T. 

sects t h e  u-axis a t  1 / B ,  3/B, etc .  

Then Rm ( T ~ u ; )  = Rm ( B  Tu).  
0 

Then o n l y  t h e  h e i g h t  of 

( T  u) depends on T ,  and w e  can normalize t h i s :  Rm 0 

( f i g u r e  l l c )  I R n o r ( ~ o u )  = ;;TR(T 0 U )  

m 
t h e n  

(BTu) c o s 3 2 d u  

m 
r 

-co 

71 The t e r m  cas - ua i s  independent o f  T ,  T and 8 .  And w e  

have j u s t  seen  t h a t  R (BTU) i s  dependent o n l y  on B .  Hence 

a i s  a f u n c t i o n  on ly  of B .  

2 0’ 

mm 

S i m i l a r i l y  w e  could  show t h a t  y d ( T ) /  y ( ~ )  fo r  any T i s  a 

f u n c t i o n  on ly  of B .  This ,  of c o u r s e ,  i s  what provides  m o s t  

o f  t h e  mot iva t ion  f o r  u s ing  T as a measure of d i s p e r s i o n .  
0 
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IV. RESULTS 

This chapter presents the computational results for the 

numerical calculation of y(~) = lRam(~) I ,  and its application 
to an evaluation of the performance measures described earlier. 

Three cases for m(t) are examined--the rectangular pulse, and 

the three and eleven-bit Barker codes. In each case the peak 

value of the cross-correlation is first computed for different 

values of B = ro/T. 

is computed and plotted for different B .  Finally, these cal- 

culations are used to compute the mean-square estimation error, 

c Z ( r ) ,  for large signal-to-noise ratio. 

Then the entire cross-correlation function 

A. Computational Methods 

Most of the computations were performed using the MAP 

(Mathematical Analysis Program) system through Compatible 

Time Sharing on the IBM 7094 computer. MAP, designed for 

the solution of mathematical problems, replaces the normal 

procedures of programming with direct command-response inter- 

change between the user and the computer. For a detailed 

description of the system, I refer the reader to the MAP 

manual (Ref. 12). 

Besides the simplicity of MAP, one of its big advan- 

tages was that it saved a good deal of programming time by 

making routines for integration, Fourier transform, etc. 
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readily available. Also, MAP provides a plotting routine 

in which up to three functions can be plotted on the same set 

of axes. This made it possible to obtain a plot for the 

cross-correlation function Y ( T )  as soon as it had been cal- 

culated. 

One of the problems with MAP in its present form is 

that there are a limited number of things that the system 

will do. For example, MAP cannot handle functional arrays 

of more than one dimension (this is to be changed in the 

near future). For this reason I found it necessary to write 

my own programs in MAD for the actual calculations of y ( ~ ) .  

Once these programs had been filed in memory, however, they 

could be executed within MAP via MAP commands. Another 

limitation in MAP is that it will only accept up to 1000 

data points for the definition of a function. This is 

insufficient for problems much more complex than an eleven- 

bit code. It also puts limitations on the parameter B .  If 

6 is very small, the sine and cosine terms in equations 67 

change extremely rapidly with respect to the auto-correlation 

function, and a large number of data points are required for 

a meaningful answer. 

Another important point worth mentioning is that these 

computations consume large amounts of computer time. To 

calculate y(~) with enough data points to allow for a 

calculation of its Fourier transform, as well as a plot, requires 

hundreds of integrations. Calculations of a y ( ~ )  would 
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typically use from four to five minutes of time, depending on 

the range and number of data points desired. Additional time 

is consumed in the calculation of E : ~ ( T )  

routines. Because of this sheer expenditure of computer 

time (and money), the calculation of Y(T) and its corresponding 

E ~ ( T )  was performed for only four or five values of B for each 

of the three cases. The results, then, at least for the cal- 

culation of E ~ ( T ) ,  are limited in terms of detailea accuracy. 

I would like to stress at this point that accurate 

and in the plotting 

answers, in terms of a number of decimal places, is not the 

aim of this thesis. The reason for spending time and money 

on these computations is to give a qualitative idea of how 

the communication scheme is affected by dispersion. This, 

I feel, has been accomplished successfully. 

B. Detection - Calculation of ~(0). 

We begin by rewriting equation 67  in a form that is 

somewhat more amenable to computation. Recognizing that 

Rm(X) = Rm(-X) , and making the transformation v = T u-T , we 
have : 

0 

The auto-correlation function R(v) was computed by giving 

a MAP command to convolve m(t) and m(-t). A single 
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MAD program ("CROS0"-see Appendix D )  was written to calculate 

y(0) for a given value of T ~ .  

"delete T ~ "  was given; MAP would then ask for the value of 

T when it tried to execute the program. 

To change T ~ ,  the MAP command 

0 

The results of these computations are plotted on the 

next page for each of the three cases. Here the dispersed 

y(0) is normalized with respect to the undispersed y ( 0 )  ; what 

we are plotting in effect then is the parameter a from equation 

30. Note that for all of the cases there is a sharp roll-off 

beginning at 6 just less than one, or T ET. Here we see 

another significance for the parameter T ~ .  

length T is a measure of the signal bandwidth, so is T a 

measure of the "bandwidth" of the medium when viewed as a 

filter (Ref. 6, p. 18). Suppose T was fixed, and we tried 

to transmit a signal with T = T /2; i.e. twice the bandwidth 

of the medium. The signal would disperse, resulting in its 

bandwidth becoming smaller--to a rough approximation, no bigger 

than the bandwidth of the medium. Hence, the dispersive 

medium limits the bandwidth that our received signal can 

have, and if the signal energy is constrained, limits the 

best mean-square estimation error that we can hope to achieve, 

no matter how we code the signal. This phenomenon of band- 

width contraction by dispersion is well illustrated by the 

photographs in the next section, in which the Fourier trans- 

form of the dispersed Y(T) is plotted for different @. 

0 

Just as the baua 

0 

0 

0 

Another point about the plots of y ( 0 )  worth mentioning 

is that the curve for the three-bit code falls offmuch more 
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rapidly for large dispersion than does the one for the rectan- 

gular pulse. The reason for this is that the auto-correlation 

function for the three-bit code (photograph P8) has large 

negative side peaks next to the main peak. 

is large and all the peaks are smeared out, the smeared side 

peaks add negatively to the smeared center peak, resulting in 

a still smaller y ( 0 ) .  This, of course, does not occur with 

the rectangular pulse whose auto-correlation function is simply 

a single triangle. The effect does occur with the eleven-bit 

code, but, as is evident from the plot, to a much lesser degree 

since the side peaks are so much smaller than the main peak. 

As far as the accuracy of these results is concerned, I 

When the dispersion 

estimate that every point on the curves is accurate to well 

within 2%. The calculation was simple, and a large number 

of data points were taken for the integrations. 

C. Calculation of Y(T) = I R ~ ~ ( T )  1 .  
Again, a MAD program was written to evaluate equation 68 

for yh), but this time for up to a few hundred values of T 

(the number depending on the complexity of R(v) and the range 

of y ( ~ )  ) . As before, a MAD program ("CRSC0R"--see Appendix D) 

was written to calculate y ( ~ )  for a given value of T ~ .  Then 

both Y(T) and P ( v )  = IR(v) 1 were plotted on the same set of 
axes for comparison. The Fourier transform of y ( ~ )  was cal- 

culated each time, and for some of the cases was plotted in 

order to show the effect of bandwidth compression. 

The photographed plots which follow are, I feel, an 
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extremely important part of the results of this thesis. They 

are probably about the best means possible of giving a quali- 

tative impression of how the signal, or more specifically the 

output of the correlation receiver, is affected by different 

amounts of dispersion. As for accuracy, all the plots of 

Y(T) are good to within at least 5% at every point. The plots 

of the Fourier transforms are accurate to within 10%. 

There are a few observations that should be made with 

regard to the plots. 

B = 1, marks a kind of critical point in the degradation of 

yh). For example, in plots P10 and P11 we see that for 

B = 1/2, Y(T) deviates only slightly from P(v) , but for B = 1 

the deviation is considerable. Also, we see that once f3 has 

reached 5 (P7), estimating the arrival time (assuming we 

could even detect the signal) with any meaningful resolution 

becomes virtually impossible. 

First, we can again see that T~ = T, or 

It is also interesting to note that for the 3 and 11 

bit codes, when 6 = 5, y ( r )  no longer has its maximum at 

T = 0 (plots P14, P24). Instead, the central peak is gone, 

and larger side peaks appear. One result of this, of course, 

is that a "catastrophic error'' is made in estimating the 

arrival time. Another result, though, is that the probability 

of successfully detecting the signal is higher than what we 

would expect by looking only at y(0). Compare plots P7 

and P14. If we base our detection decision on some peak 

output of the correlation receiver, no matter where that 

peak occurs, then for the same amount of dispersion and 
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P1 - Rectanbular pulse. 
y(7) f o r  5 = T/4. 

P2 - Corresponding 
spectrum, = T/4. 

P3 - y ( T )  f o r  % =  T/2, and P(v)  

P4 - y ( 7 )  f o r  7,= T, and P(v) .  
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P5 - y(7) f o r  = 2T, P6 - Corresponding 
and ? ( v )  spectrum, % =  2T 

P7 - y(T)  f o r  70" 5T, and P(v )  
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~8 - R ( v )  for 3-bit 
Barker cod@. 

Pg - Corresponding 
s2ectrum f o r  P(V) = \ R ( v ) ~  

P10 - yCT) for 70 = T/2, and P ( v )  

P11 - y(T)  for % =  T ,  and P(v) 

-60- 



PI2 - y(7) f o r  3: = 2T, 
and P ( v )  

P13 - Correspondlng 
s;!ectrum, = 2T 

P14 - y ( r )  f o r 7 ,  = 5 T ,  and P ( v )  
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P15 - 3 ( v )  f o r  the 
11-bit  Barker code 

P16 - Corresponding 
spectrum f o r  P(V) = \ R ( v ) \  

P18 - Corresponding 
spectrum,7', = .85T 
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Pl9 - y(T) for = T, 
an? ? ( v )  

P20 - Corresponding 
spectrum,*z = T 

~ 2 1  - y(T)  f o r  5 = L ~ T ,  and P;V) 
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P22 - y(7) f o r  7;; = 2T, 
and P ( v )  

P23 - Corresponding 
spectrum, Tu = 2T 

P24 - y(T) f o r  % =  5T, 
and p ( v )  

~ 2 5  - Corresponalng 
spectrum, Te = 5T 
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I .  

same signal energy it would be easier to detect the 3-bit 

code than the rectangular pulse. 

This argument is certainly very qualitative, and the 

resulting difference. in detection probabilities is small. I 

brought it out mainly to illustrate that for dispersive 

channels coding can influence signal detection, and parameter 

estimation may depend not only on the signal energy and band- 

width, but on the exact form of the code. I will not pursue 

this any longer at this time, but I would point out that 

further work along these lines is in order. 

D. Estimation - Calculation of E' ( T ) .  

Once Y(T) had been calculated, the mean-square estimation 

error could then be computed using only MAP commands. The 

Fourier transform of y ( ~ )  was computed (call it c(w), a new 

function x(w) = w2*c(w) was created, and this function was 

then integrated. A normalized E ~ ( T )  could then be obtained 

by dividing the integral resulting from the undispersed case 

by this integral. The results are plotted on the next page. 

Again, these calculations are designed only to give a 

rough idea of how a particular kind of estimation error is 

affected by dispersion. In this sense their value is limited 

and they shouldn't be taken too seriously. For example, note 

that at B = 5 the error for the 3-bit code is considerably 

smaller than that for the rectangular pulse. We would expect 

this from comparing plots P7 and P14 in the previous section-- 

y(~) for the 3-bit code has a peak on each side, while Y(T) 
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for the rectangular pulse has no real peak. But while the 

mean-square error about a side peak will be small for the 

3-bit code, we are almost certain to make a catastrophic 

error. This, of course, limits the meaningfulness of the 

results in this section. 
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The results of the previous chapter showed to a good degree 

of accuracy how y(0) changes as a function of the dispersion 

ratio B ,  what the entire correlator output y(~) looks like for 

several different values of B ,  and to a lesser degree of 

accuracy", how the mean-square estimation error changes as a 

function of B .  I would like to stress the "lesser degree of 

accuracy in the curves relating (T) to B .  One obvious 

problem, of course, is the limited number of points on which 

the curves are based. The accuracy of the points themselves 

is a l s o  in doubt in some instances. In particular I question 

the validity of the curve for the 11-bit code. I am at a 

loss to account for the behavior of this curve, especially 

when compared to the other two. Also the computations for 

the 11-bit code are most susceptible to machine round-off 

error because of thelarger number of data points required. 

I suggest that the calculations that go from y ( ~ )  to E ~ ( T )  

be re-done using more data points, and then checked by 

hand. 

By now the reader should be aware of some of the 

undesirable features of the method used to calculate y(r). 

The problem is not the limit of 1000 data points in MAP (this 

can be overcome); the problem is that so many data points 

are needed in the first place. This problem is inherent in 

the fact that we are calculating y ( ~ )  from equation 68. The 
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sine and cosine terms in this equation oscillate more and more 

rapidly as v gets larger (especially for small ro) so that 

an enormous number of points must be used to evaluate the 

integrals. And the magnitude of this problem grows exponen- 

tially as the range of the auto-correlation function R(v) is 

made longer. For example, to calculate y(r) for a doubly- 

folded ll-bit Barker code (121 elementary pulses), with f3 = 1, 

we would need at least 20,000 data points to evaluate the 

integrals. When we consider that each integral will have to 

be evaluated at least 500 times (because of the larger range 

of T ) ,  we can begin to see what this means in erms of an 

expenditure in computer time. 

Appendix C contains a derivation for an alternative 

expression for Y(T) consisting of sums of Fresnel integrals. 

These Fresnel integrals have been well tabulated (e.g. Ref. 11, 

thus suggesting a way of calculating Y(T) without performing 

any integrations. The problem, of course, is the necessity 

of feeding an entire table of Fresnel integrals into the com- 

puter and allocating storage space for it. Once this has 

been done, though, the stored table could be used to solve 

any number of cases. For simple cases (including the ll-bit 

code) this really is not worth it and it is more efficient 

to calculate y ( ~ )  from equation 6 8  as I have done. However, 

for more complicated cases (doubly and triply-folded codes) 

this alternative approach is much more reasonable, and in fact 

is almost necessary. I would suggest, then, that a program be 

written to calculate y(~) in this way. 
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Another point that should be raised is the question of 

how these results relate to the impending Sunblazer experiment. 

In particular, what kind of numbers can we expect for the 

dispersion time T for different points in the Sunblazer 

trajectory. In Appendix ArI have used the Allen-Baumbach 

model for the extended corona to calculate a curve for T~ 

as a function of path offset for the proposed Sunblazer 

orbit. With a signal baud length of 20 microseconds, the 

curve tells us that B will not exceed unity until the path 

offset becomes less than two solar radii. The reader should 

realize, however, that the significance of this curve is 

dubious. To begin with, the Allen-Baumba& model only gives 

a very rough estimate (accurate to a factor of three or four) 

of the average value of the coronal electron density. Solar 

prominences and bursts can cause the electron density to 

change by orders of magnitude over short lengths of time, 

and this can occur frequently during periods of high solar 

activity. 

0 

It is this fact that we cannot predict how much disper- 

sion to expect ahead of time that puts a limit on the perfor- 

mance of any communication scheme that we might design. That 

is, if we knew exactly what T~ would be at every point in the 

satellite trajectory, then we could re-design our receiver so 

as to again achieve Gptimum performam. For example, we could 

disperse the internally generated m(t) by an equivalent amount 
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so that an auto-correlation function would again result (this 

will give optimum detection performance, but the estimation 

performance would still be somewhat degraded, though less so 

than before). Or we could put a pre-filter in front of the 

receiver that would "undisperse" the received waveform. If 

this filter was reversible we could recalculate the decision 

rules so as to again have optimum receiver performance. The 

point is that such a scheme would not work because we would 

not know how much dispersion to compensate for. 

The fact that we are stuck with a dispersive channel 

for which we cannot compensate suggests further work directed 

towards tying dispersion into the comunication problem. For 

example, I have mentioned that T~ is a measure of an effec- 

tive bandwidth of the medium, and if we try to transmit a 

signal with bandwidth larger than this it will be dispersed 

such that the resulting bandwidth will be smaller than the 

medium's bandwidth. This in turn places a limit on the esti- 

mation error than we can hope to achieve. I have not, however, 

tried to analyze this in any exact, quantitative terms, but 

this should be done in the future. Another problem that 

should be examined is to see how coding is related to dis- 

persion. For example, is there a class of codes, or could 

a class of codes be devised, that behaves particularly well 

in a dispersive channel? 

The result of folding a code on itself should also be 

examined in the light of dispersion. As a step in this direc- 

tion, I plan in the near future to calculate y(0) , Y ( T )  , and 

E ~ ( T )  for at least the doubly-folded 5-bit Barker code. 
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VI. APPENDICES 

A. Calculation of T for the Sunblazer Trajectory. " 

We begin with the dispersion equation for the medium 

equation 55)  : 

-3/2 
( 0 2 - 0 2 )  

1 
C P C P 

-1/2 w 2  - -  then k" (w)  = - ( w 2 - w 2 )  

then, 
w 2  3w k"(w ) 2 - 1 1  [- + *5 - 5 - .e5] 

0 c w  
0 0 0 0 

2 =-> 0 

w = 3.16-103n, n in electrons/m2 
P 

Take fo = 75 Mcps, w = 4 . 7 2 0 1 0 ~  rad/sec, then 
0 

The dispersion time T~ has been defined as: 

where z is the path length. This expression must be integrated 

over the propagation path (see figure 1): 
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. 

r2  = s2  + p 2 ,  d s  = Jrz r d r  - g z  

For a p a r t i c u l a r  p o i n t  i n  t he  t r a j e c t o r y ,  l e t  R be t h e  d i s t a n c e  e 

from t h e  sun t o  t h e  e a r t h ,  

Then, 
RS 

n ( r )  - r d r  n ( r ) d s  = 

P 
J 

I f  w e  want t o  e x p r e s s  r i n  

and Rs from t h e  sun t o  t h e  s a t e l l i t e .  

( 7 4 )  

s o l a r  r a d i i ,  t hen  w e  m u l t i p l y  each  

i n t e g r a l  by Ro. 

corona : 

W e  use  t h e  Allen-Baumbach m o a e l  f o r  t h e  extended 

r i n  solar  r a d i i ,  r a 1 .5  R 
0 

If w e  s u b s t i t u t e  t h i s  i n t o  equat ion  74 ana e v a l u a t e  t h e  i n t e g r a l s  

w e  f i n d  t h a t :  

H e r e  x i s  e i t h e r  R 

t h r e e  t e r m s  on t h e  r i g h t  c a n  be ignored f o r  p > 6 R o .  

t h e n  , 

or  Rs. T o  good approximation t h e  f i r s t  

W e  have 
e 
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Numerical values for T were calculated using the data 
0 

for the proposed Sunblazer orbit that were computed by Charles 

Peterson. 

plot of the Sunblazer orbit appear on the preceding pages. 

B. Attenuation Due to Collisions. 

A plot of T~ as a function of  together with Peterson’s 

s 

The coefficient of attenuation due to collisions follows 

from a second-order model for the 

for the electrons will now have a 

dv Ee = m- +av dt - - 

medium. The equation of motion 

damping term added on to it: 

(77) 

Here a = mv where v is the electron-ion collision frequency. 

Since J = nev, - - 

- d J + E J = -  ne2 E 
dt m- m -  

Expressing E and J as complex exponentials for a plane wave, 

and writing the wave equation: 

- - 

j (ut-kz) E = i  

J = i J e  

- -x Eoe 
j (ut-kz) 

x o  - 

a 2E aJ a 2E 
az’ = uo at + P O E O a t ’  

Finally, we make the approximation of very small attenuation, 

namely that v/u <<<1. 

Now substituting equations 79 into equation 78 gives: 

- ne - 
Jo c1 + jw Eo 

and putting (79) into ( 8 0 )  gives: 

-k2E = - u  E u2 
0 0 0  EO 

+ 

Combining (81) and ( 8 2 ) ,  we have: 
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We can then manipulate this expression and make an approxima- 

tion for the square root. The coefficient of attenuation, K ,  

is just the negative of the imaginary part of k. Omitting 

the algebra, we have: 

Taking v = cps, w = 108cps, we see that 

. 

We have, then, 

1 a w  
K =  P. 

2mcw JwL-u 
P 

V (w,/d 

2c K-(i / u p  - - - .  
I? 

An alternative derivation is outlined in Ref. 3 .  

( 8 5 )  

C.  Another Method of Calculating y ( ~ )  for Binary Signals. 

Binarv Sianals 

If m(t) is a binary waveform, the auto-correlation function 

can be expressed as: 
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(k+l) T 

kT 
Here N is the number of binary bits, and (akT+bk) 

is a line segment defined over the interval (k+l)T< T<kT. The - -  

Rm (T-T~U) =y (a k o  T u+bk-akT) 
k=-N 

three-bit Barker code is shown as an example in figure 12a. 
4 

We want to evaluate an integral of the fhrm: 
m 

T +  (k+l) T 
T 
0 

T + ~ T  u=- 
T 
0 

- w  

Using the same a ' s  and bk's we can write R (T-T~u) as a k mm 
function of u (figure 12b): 

Then, 
m 

-03 

'k+l 

( 8 7 )  

. 

'k+l 

where 
- T+kT lk - - 

T 
0 
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k=-3 : ( -T  - 3 T )  

3T 

-3T 

Figure  12a 

T 

0 
I 

* 

3 1  

T - ~ T  

. 

-T ' 

- +3T - 
T 
0 

U 

F igu re  12b 
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H e r e  C ( x )  and S ( x )  are t h e  F r e s n e l  c o s i n e  and s i n e  i n t e g r a l s :  
X X 

0 0 

Rewri t ing  equa t ion  67 :  

W e  see, t h e n ,  t h a t  

where 

a - r  
- [ s i n l 1 2  -sin-1 * 2  2 k  ] + (bk-akT) [ C ( l k + l ) - C ( l k )  I ( g o a l  2 k + l  Pk - - 

71 

and 

S i n c e  C ( x )  and S ( x ) a r e  w e l l  t a b u l a t e d ,  e q u a t i o n s  89 and 9 0  

p rov ide  a way of c a l c u l a t i n g  Y ( T )  w i thou t  performing any 

i n t e g r a t i o n s .  The accuracy  of t h e  c a l c u l a t i o n  w i l l  uepend 
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on the size of the Fresnel integral table that is fed into 

the computer, but once the table is fed in, the same accuracy 

will be attained for a binary signal of any length. This method 

is particularly advantageous, then, for analyzing longer and 

more complex signals. 

D. Computer Programs 

The next page contains the MAD programs to calculate y ( 0 )  

and y ( ~ ) .  The page following contains a sample commanu-response 

exchange in MAP for the calculation of E ~ ( T ) .  

. 
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